Predicting voltage sensing

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensing voltage for function

original form after stretching but can also be irreversibly deformed. This viscoelasticity makes clots stiff enough to stem blood flow but pliable enough not to become obstructive. Weisel’s group investigated the mechanical properties of individual fibers that confer viscoelasticity to clots. They used laser tweezers to pull on beads attached to fibrin fibers within clots that were prepared fro...

متن کامل

Molecular Models of Voltage Sensing

Voltage-gated ion channels have always been overachievers. They have the singular distinction of having solved the permeation problem five times over. Not only do they have a central, highly selective pore through which they conduct charged ions, they also have four peripheral “pores” or gating canals through which they conduct the charged portions of their voltage sensors. This trick of protei...

متن کامل

Voltage-sensing and Substate Rectification

The article by Bukauskas et al. (2002) in this issue of The Journal addresses several key issues in the structure– function of connexin channels, and suggests a structural link between voltage-sensitive gating and the charge in the pore. Previous work on connexin32 (Cx32) noted a correlation between the sign of voltage-sensing charges and the rectification of the subconduc-tance state induced b...

متن کامل

Molecular mechanism of voltage sensing in voltage-gated proton channels

Voltage-gated proton (Hv) channels play an essential role in phagocytic cells by generating a hyperpolarizing proton current that electrically compensates for the depolarizing current generated by the NADPH oxidase during the respiratory burst, thereby ensuring a sustained production of reactive oxygen species by the NADPH oxidase in phagocytes to neutralize engulfed bacteria. Despite the impor...

متن کامل

Sensing charges of the Ciona intestinalis voltage-sensing phosphatase

Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of General Physiology

سال: 2018

ISSN: 0022-1295,1540-7748

DOI: 10.1085/jgp.201812233